久久精品国内偷自一区,红桃免费观看电视剧高清斗破苍穹,曰曰摸天天摸人人看久久久

Exhaust gas treatment technology

Products > Exhaust gas Treatment > Exhaust gas treatment technology

Exhaust gas treatment technology

There are many domestic organic waste gas treatment technologies, but as far as their working principles are concerned, they can be divided into the following eight types:

      1. Adsorption: The use of an adsorbent to physically combine with a volatile organic compound or a chemical reaction to remove contaminated components.

      2. Absorption: The organic waste gas and the washing liquid are brought into full contact to realize the transfer of pollution molecules, and then the organic waste gas molecules are completely removed by chemical agents.

      3. Condensation: The exhaust gas is cooled to the "freezing point" of the organic exhaust gas molecules, which are condensed to a liquid state and then recovered.

      4. Membrane separation: Use synthetic membrane to separate toxic substances in exhaust gas.

      5. Biodegradation: Microbes digest and metabolize pollutants in waste gas, and convert the pollutants into harmless water, carbon dioxide and other inorganic salts.

      6. Thermal incineration: Based on the characteristics of organic compounds in the exhaust gas that can be burned and oxidized, it is converted into harmless carbon dioxide and water.

      7. Plasma: The plasma field is enriched with a large number of active species, such as ions, electrons, excited atoms, molecules, and free radicals; active species dissociate small molecules of pollutant molecules.

      Plasma is mainly suitable for organic waste gas treatment with high concentration and relatively low temperature. It is generally suitable for the recovery and treatment of organic waste gas with high VOCs content and small gas content. Since most VOCs are flammable and explosive gases, subject to the limit of explosion, the VOCs content in the gas will not be too high, so it must be higher. The recovery rate needs to adopt very low-temperature condensing medium or high-pressure measures, which will inevitably increase equipment investment and processing costs. Therefore, this technology is generally used as a good processing technology and combined with other technologies.

      8. Photooxycatalysis: Photocatalyst nanoparticles are stimulated to generate electron-hole pairs when irradiated with light of a certain wavelength. Water adsorbed on the surface of the hole-decomposition catalyst generates hydroxyl radicals OH, and the electrons reduce the surrounding oxygen to active ion oxygen. Therefore, it has a strong redox capacity and can destroy various pollutants on the surface of the photocatalyst.



  • <bdo id="ugw2p"><mark id="ugw2p"></mark></bdo>
    • <bdo id="ugw2p"><meter id="ugw2p"></meter></bdo>
    • <label id="ugw2p"><kbd id="ugw2p"></kbd></label>
          <label id="ugw2p"><samp id="ugw2p"></samp></label>

        • <span id="ugw2p"><input id="ugw2p"></input></span>
        • 主站蜘蛛池模板: 靖江市| 正宁县| 卢氏县| 北辰区| 左云县| 玛多县| 莱州市| 府谷县| 丹棱县| 昌平区| 五河县| 尤溪县| 吉木萨尔县| 鹤庆县| 平顺县| 辽阳县| 稷山县| 繁昌县| 临沭县| 平顶山市| 宁河县| 金塔县| 南和县| 丹寨县| 通渭县| 微山县| 彰化市| 澄迈县| 武城县| 江孜县| 福建省| 天津市| 平顶山市| 深水埗区| 乳山市| 平利县| 巍山| 岱山县| 井研县| 山阳县| 元氏县|