久久精品国内偷自一区,红桃免费观看电视剧高清斗破苍穹,曰曰摸天天摸人人看久久久

Exhaust gas treatment technology

Products > Exhaust gas Treatment > Exhaust gas treatment technology

Exhaust gas treatment technology

There are many domestic organic waste gas treatment technologies, but as far as their working principles are concerned, they can be divided into the following eight types:

      1. Adsorption: The use of an adsorbent to physically combine with a volatile organic compound or a chemical reaction to remove contaminated components.

      2. Absorption: The organic waste gas and the washing liquid are brought into full contact to realize the transfer of pollution molecules, and then the organic waste gas molecules are completely removed by chemical agents.

      3. Condensation: The exhaust gas is cooled to the "freezing point" of the organic exhaust gas molecules, which are condensed to a liquid state and then recovered.

      4. Membrane separation: Use synthetic membrane to separate toxic substances in exhaust gas.

      5. Biodegradation: Microbes digest and metabolize pollutants in waste gas, and convert the pollutants into harmless water, carbon dioxide and other inorganic salts.

      6. Thermal incineration: Based on the characteristics of organic compounds in the exhaust gas that can be burned and oxidized, it is converted into harmless carbon dioxide and water.

      7. Plasma: The plasma field is enriched with a large number of active species, such as ions, electrons, excited atoms, molecules, and free radicals; active species dissociate small molecules of pollutant molecules.

      Plasma is mainly suitable for organic waste gas treatment with high concentration and relatively low temperature. It is generally suitable for the recovery and treatment of organic waste gas with high VOCs content and small gas content. Since most VOCs are flammable and explosive gases, subject to the limit of explosion, the VOCs content in the gas will not be too high, so it must be higher. The recovery rate needs to adopt very low-temperature condensing medium or high-pressure measures, which will inevitably increase equipment investment and processing costs. Therefore, this technology is generally used as a good processing technology and combined with other technologies.

      8. Photooxycatalysis: Photocatalyst nanoparticles are stimulated to generate electron-hole pairs when irradiated with light of a certain wavelength. Water adsorbed on the surface of the hole-decomposition catalyst generates hydroxyl radicals OH, and the electrons reduce the surrounding oxygen to active ion oxygen. Therefore, it has a strong redox capacity and can destroy various pollutants on the surface of the photocatalyst.



  • <bdo id="ugw2p"><mark id="ugw2p"></mark></bdo>
    • <bdo id="ugw2p"><meter id="ugw2p"></meter></bdo>
    • <label id="ugw2p"><kbd id="ugw2p"></kbd></label>
          <label id="ugw2p"><samp id="ugw2p"></samp></label>

        • <span id="ugw2p"><input id="ugw2p"></input></span>
        • 主站蜘蛛池模板: 通渭县| 贵德县| 南皮县| 察隅县| 娄底市| 科尔| 太湖县| 独山县| 合作市| 洞头县| 龙南县| 胶州市| 邵阳县| 黔西县| 扶风县| 姚安县| 潮州市| 休宁县| 乌兰察布市| 抚顺市| 宝坻区| 万宁市| 宜丰县| 永昌县| 漳浦县| 莎车县| 博爱县| 清涧县| 石狮市| 冕宁县| 河津市| 当阳市| 九龙县| 罗源县| 巴南区| 德钦县| 湾仔区| 容城县| 乌拉特前旗| 宝丰县| 永顺县|